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Motivation

* Cross-domain recommendation (CDR): Leveraging overlapping
users as a knowledge bridge to promote accuracy in target domain . oo
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The recommendatlon quality for non-overlapping users
DEGRADES after cross-domain learning on Epinions dataset.



Motivation

 An intuitive solution:

 Let all users enjoy cross-domain learning as overlapping users!
* Generate source embeddings for non-overlapping users in the target domain.
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« Butitis technically challenging...

| * (C1) How to generate virtual users for non-overlapping target users with no
existing data in the source domain?

e (C2) How to ensure that the virtual users generated remain representative of
‘ the real source-domain data distribution? |
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Our Method: VUG (Virtual User Generation)
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Our Method: VUG (Virtual User Generation)

e (C2) How to ensure that
the virtual users generated
remain representative of
the real source-domain
data distribution?

e Supervision loss over
overlapplng users:
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e Constraint loss among
non-overlapping users:
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For C2: Introduce a limiter with
supervision loss and constraint
loss to ensure generation fidelity
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Our Method: VUG (Virtual User Generation)
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Generated source embeddings for the
target-domain non-overlapping users




Experimental Setting

* On three real-world datasets * Accuracy metrics:
NCDG and HR

Dataset Domain #Users #Items #Inter. Overlap

e Fairness metrics

Amagon  POOK 65,725 70,071 2,021,443 2.55%
Movie 8,663 7,790 229,257  19.32%
Book 18,086 33,067 809,248 5.94% o § : M(L
Douban . u ‘ 0
Movie 3372 9342 31,797  3188% [UQF — ueu
Elec 10,124 13,018 34,859  12.51% E M(L
. . ’ b ] T
Epinions - e 4247 4094 16471  29.83% u \b{ °| weld T\ o

UGF measures absolute accuracy
difference (e.g., NCDG@10)
between overlapping and non-
overlapping users.

* As our VUG is model-agnostic, we examine
its performance by integrating it into
widely-used CDR baselines.
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Major Results
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\  UGF measures absolute accuracy
difference (e.g., NCDG@10) between
overlapping and non-overlapping users.
Lower UGF, better fairness performance.
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Our method VUG largely improves
the fairness performance.
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Ablation Study

Accuracy (larger is better)

Method

HR@10 HR@20 NDCG@10 NDCG@20
w/o Leonstrain~ 0.1302  0.1974 0.0655 0.0821
w/0 Lsuper 0.1355  0.1985 0.0707 0.0864
w/o aSer 0.1298  0.1974 0.0662 0.0828
w/o afem 0.1287  0.1963 0.0658 0.0824
VUG 0.1363 0.2001 0.0710 0.0865
Method UGF (smaller is better)

HR@10 HR@20 NDCG@10 NDCG@20
w/0 Leonstrain  0.0010  0.0168 0.0005 0.0033
Ww/0 Lsuper 0.0281  0.0152 0.0129 0.0096
w/o a7 0.0020  0.0095 0.0015 0.0034
w/o a/tem 0.0041  0.0112 0.0005 0.0035
VUG 0.0003 0.0015 0.0005 0.0014

We examine the contributions of
each component of VUG, in terms
of accuracy and fairness.

Accuracy: HR and NDCG

Unfairness: UGF

All components positively
contribute to VUG's accuracy and
fairness performance.



Efficiency Analysis

Some may concern that integrating VUG makes cross-domain
recommendation models too complex and inefficient...
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Conclusion and Future Work

* Conclusion:

 We address a critical unfairness issue in cross-domain
recommendations.

* We propose a virtual user generation (VUG) framework that
generates source embeddings for non-overlapping users in the
target domain.

e Future work:

* To explore unfair phenomenon exists in other CDR methods, such as
review-based approaches.

* To explore the application and deployment of VUG within real-world
industrial scenarios.
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